Chapter 3

Special Techniques

3.1 Laplace’s Equation
3.1.1 Introduction

The primary task of electrostatics is to find the electric ficld of a given stationary charge
distribution. In principle, this purpose is accomplished by Coulomb’s law, in the form of
Eq. 2.8:

1 2, .,
E(r) = —/ —=pr)dr. (3.1)
4reg J 2~

Unfortunately, integrals of this type can be difficult to calculate for any but the simplest
charge configurations. Occasionally we can get around this by exploiting symmetry and
using Gauss's law, but ordinarily the best strategy is first to calculate the porenrial, V, which
is given by the somewhat more tractable Eq. 2.29:

| | —
V(r) = — f -p(r)dr’. (3.2)
dreg J 2

Still, even rhis integral is often too tough to handle analytically. Morecover, in problems
involving conductors p itself may not be known in advance: since charge is free to move
around, the only thing we control directly is the rotal charge (or perhaps the potential) of
cach conductor.

In such cases it is fruitful to recast the problem in differential form, using Poisson's
equation (2.24),

|
vy = = (3.3)
0

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. Very often,

in fact, we are interested in finding the potential in a region where p = 0. (If p = 0
everywhere, of course, then V = 0, and there is nothing further to say—that’s not what |
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1 want to call your attention to two features of this result; they may seem silly and
obvious in one dimension, where I can write down the general solution explicitly, but the
analogs in two and three dimensions are powerful and by no means obvious:

1. V(x) is the average of V(x +a) and V(x — a). for any a:
Vix) = i[V(x +a)+ V(x —a)l.

Laplace’s equation is a kind of averaging instruction: it tells you to assign to the point
x the average of the values to the left and to the right of x. Solutions to Laplace’s
equation are, in this sense. as boring as they could possibly be, and yet fit the end

points properly.

2. Laplace’s equation tolerates no local maxima or minima; extreme values of V must
occur at the end points. Actually, this is a consequence of (1), for if there were a local
maximum, V at that point would be greater than on either side, and therefore could
not be the average. (Ordinarily, you expect the second derivative to be negative at
a maximum and positive at a minimum. Since Laplace’s equation requires, on the
contrary, that the second derivative be zero, it seems reasonable that solutions should
exhibit no extrema. However, this is not a proof, since there exist functions that have
maxima and minima at points where the second derivative vanishes: x*, for example,
has such a minimum at the point x = 0.)

3.1.3 Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

This is no longer an ordinary differential equation (that is, one involving ordinary derivatives
only); it is a partial differential equation. As a consequence, some of the simple rules you
may be familiar with do not apply. For instance, the general solution to this equation doesn’t
contain just two arbitrary constants—or, for that matter, any finite number—despite the fact
that it’s a second-order equation. Indeed, one cannot write down a “general solution™ (at
least, not in a closed form like Eq. 3.6). Nevertheless, it is possible to deduce certain
properties common to all solutions.

It may help to have a physical example in mind. Picture a thin rubber sheet (or a soap
film) stretched over some support. For definiteness, suppose you take a cardboard box, cut
a wavy line all the way around, and remove the top part (Fig. 3.2). Now glue a tightly
stretched rubber membrane over the box, so that it fits like a drum head (it won’t be a flar
drumhead, of course, unless you chose to cut the edges off straight). Now, if you lay out
coordinates (x, y) on the bottom of the box, the height V (x, y) of the sheet above the point
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mean. There may be plenty of charge elsewhere, but we're confining our attention to places
where there is no charge.) In this case Poisson’s equation reduces to Laplace’s equation:

vy =0, (3.4)
or, written out in Cartesian coordinates,

v av vy
53 s =0, (3.5)

This formula is so fundamental to the subject that one might almost say electrostatics is
the study of Laplace’s equation. At the same time, it is a ubiquitous equation, appearing in
such diverse branches of physics as gravitation and magnetism, the theory of heat, and the
study of soap bubbles. In mathematics it plays a major role in analytic function theory. To
get a feel for Laplace’s equation and its solutions (which are called harmonic functions),
we shall begin with the one- and two-dimensional versions, which are easier to picture
and illustrate all the essential properties of the three-dimensional case (though the one-
dimensional example lacks the richness of the other two).

3.1.2 Laplace’s Equation in One Dimension
Suppose V depends on only one variable, x. Then Laplace’s equation becomes

d*v

dx? — o

The general solution is
Vix) =mx + b, (3.6)

the equation for a straight line. It contains two undetermined constants (m and b), as
is appropriate for a second-order (ordinary) differential equation. They are fixed, in any
particular case, by the boundary conditions of that problem. For instance, it might be
specifiedthat V =4atx =1, and V =0atx = 5. Inthatcasem = =l and b = §, so
V = —x + 5 (see Fig. 3.1).
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Figure 3.1




“pocket” somewhere to settle into, for Laplace’s equation allows no such dents in
the surface. From a geometrical point of view, just as a straight line is the shortest
distance between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one dimension)
nor offer a suggestive physical example to guide your intuition (as 1 did in two dimensions).
Nevertheless, the same two properties remain true, and this time I will sketch a proof.

1. The value of V at point r is the average value of V over a spherical surface of radius

sphere

2. As aconsequence, V can have no local maxima or minima; the extreme values of V
must occur at the boundaries. (For if V had a local maximum at r, then by the very
nature of maximum I could draw a sphere around r over which all values of V—and
a fortiori the average—would be less than at r.)

Proof: Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge ¢ located outside the sphere. We may
as well center the sphere at the origin and choose coordinates so that ¢ lies on
the z-axis (Fig. 3.3). The potential at a point on the surface is

where

S0

Vae = ---'—Lf:3+R3—z;Rcos9| 2R? sinf df d¢

n

= 1 /2R -2:Rcos0
R 0

|
— 4+ R —-(z—R)])=—
47r602:Rl( I ) 4reo

TRE )

But this is precisely the potential due to g at the center of the sphere! By the
superposition principle, the same goes for any collection of charges outside the
sphere: their average potential over the sphere is equal to the net potential they
produce at the center. qed
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Figure 3.2

(x, y) will satisfy Laplace's equation.! (The one-dimensional analog would be a rubber
band stretched between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in one di-
mension:

1.

o

The value of V at a point (x, y) is the average of those around the point. More
precisely, if you draw a circle of any radius R about the point (x, y), the average
value of V on the circle is equal to the value at the center:

1
X, y) = — Vdl.
Vix,y) 7R f

circle

(This, incidentally, suggests the method of relaxation on which computer solutions
to Laplace's equation are based: Starting with specified values for V at the boundary,
and reasonable guesses for V on a grid of interior points, the first pass reassigns to
each point the average of its nearest neighbors. The second pass repeats the process,
using the corrected values, and so on. After a few iterations, the numbers begin to
settle down, so that subsequent passes produce negligible changes, and a numerical
solution to Laplace's equation, with the given boundary values, has been achieved.)?

V has no local maxima or minima; all extrema occur at the boundaries. (As before,
this follows from (1).) Again, Laplace's equation picks the most featureless func-
tion possible, consistent with the boundary conditions: no hills, no valleys, just the
smoothest surface available. For instance, if you put a ping-pong ball on the stretched
rubber sheet of Fig. 3.2, it will roll over to one side and fall off—it will not find a
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Figure 3.3

Problem 3.1 Find the average potential over a spherical surface of radius R due to a point
charge g located inside (same as above, in other words, only with z < R). (In this case, of
course, Laplace’s equation does not hold within the sphere.) Show that, in general,

Qenc
dregR’

Vave = Vcenter +

where Veenter 18 the potential at the center due to all the external charges, and Qenc is the total
enclosed charge.

Problem 3.2 In one sentence. justify Earnshaw’s Theorem: A charged particle cannot be
held in a stable equilibrium by electrostatic forces alone. As an example, consider the cubical
arrangement of fixed charges in Fig. 3.4. It Jooks, off hand, as though a positive charge at
the center would be suspended in midair, since it is repelled away from each corner. Where
is the leak in this “electrostatic bottle™? [To harness nuclear fusion as a practical energy
source it is necessary to heat a plasma (soup of charges particles) to fantastic temperatures—so
hot that contact would vaporize any ordinary pot. Earnshaw’s theorem says that electrostatic
containment is also out of the question. Fortunately, it is possible to confine a hot plasma
magnetically.]
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Figure 3.4




